Hypertree Decompositions: Structure, Algorithms, and Applications

نویسندگان

  • Georg Gottlob
  • Martin Grohe
  • Nysret Musliu
  • Marko Samer
  • Francesco Scarcello
چکیده

We review the concepts of hypertree decomposition and hypertree width from a graph theoretical perspective and report on a number of recent results related to these concepts. We also show – as a new result – that computing hypertree decompositions is fixed-parameter intractable. 1 Hypertree Decompositions: Definition and Basics This paper reports about the recently introduced concept of hypertree decomposition and the associated notion of hypertree-width. The latter is a cyclicity measure for hypergraphs, and constitutes a hypergraph invariant as it is preserved under hypergraph isomorphisms. Many interesting NP-hard problems are polynomially solvable for classes of instances associated with hypergraphs of bounded width. This is also true for other hypergraph invariants such as treewidth, cutset-width, and so on. However, the advantage of hypertree-width with respect to other known hypergraph invariants is that it is more general and covers larger classes of instances of bounded width. The main concepts of hypertree decomposition and hypertree-width are introduced in the present section. A normal form for hypertree decompositions is described in Section 2. Section 3 describes the Robbers and Marshals game which characterizes hypertree-width. In Section 4 we use this game to explain why the problem of checking whether the hypertree-width of a hypergraph is ≤ k is feasible in polynomial time for each constant k. However, in Section 5 we show that this problem is fixed-parameter intractable with respect to k. In Section 6 we compare hypertree-width to other relevant hypergraph invariants. In Section 7 we discuss heuristics for computing hypertree decompositions. In Section 8 we show how hypertree decompositions can be beneficially applied for solving constraint satisfaction problems (CSPs). Finally, in Section 9 we list some open problems left for future research. Due to space limitations this paper is rather short, and most proofs are missing. A more thorough treatment can be found in [13,16,2,1,15,17], most of which are available at the Hypertree Decomposition Homepage at http://si.deis.unical.it/∼frank/Hypertrees. ? This paper was supported by the Austrian Science Fund (FWF) project: Nr. P17222-N04, Complementary Approaches to Constraint Satisfaction. Correspondence to: Georg Gottlob, Institut für Informationssysteme, TU Wien, Favoritenstr. 9-11/184-2, A-1040 Wien, Austria, E-mail: [email protected]. A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty set V (H) of vertices, and a set E(H) of subsets of V (H), the hyperedges of H . We only consider finite hypergraphs. Graphs are hypergraphs in which all hyperedges have two elements. For a hypergraph H and a set X ⊆ V (H), the subhypergraph induced by X is the hypergraph H [X ] = (X, {e ∩ X | e ∈ E(H)}). We let H \ X := H [V (H) \ X ]. The primal graph of a hypergraph H is the graph H = (V (H), {{v, w} | v 6= w, there exists an e ∈ E(H) such that {v, w} ⊆ e}). A hypergraph H is connected if H is connected. A set C ⊆ V (H) is connected (in H) if the induced subhypergraph H [C] is connected, and a connected component of H is a maximal connected subset of V (H). A sequence of nodes of V (H) is a path of H if it is a path of H . A tree decomposition of a hypergraphH is a tuple (T, χ), where T = (V (T ), E(T )) is a tree and χ : V (T ) −→ 2 (H) is a function associating a set of vertices χ(t) ⊆ V (H) to each vertex t of the decomposition tree T , such that for each e ∈ E(H) there is a node t ∈ V (T ) such that e ⊆ χ(t), and for each v ∈ V (H) the set {t ∈ V (T ) | v ∈ χ(t)} is connected in T . We assume the tree T in a tree decomposition to be rooted. For every node t, Tt denotes the rooted subtree of T with root t. For each such subtree Tt, let χ(Tt) =

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Heuristic Methods for Tree Decompositions and Generalized Hypertree Decompositions

Many practical hard problems in mathematics and computer science may be formulated as constraint satisfaction problems (CSPs). Tree and generalized hypertree decompositions are two important concepts which can be used for identifying and solving tractable classes of CSPs. Unfortunately the task of finding an optimal tree or generalized hypertree decomposition is an NP-complete problem. Thus man...

متن کامل

Heuristic Methods for Hypertree Decomposition

The literature provides several structural decomposition methods for identifying tractable subclasses of the constraint satisfaction problem. Generalized hypertree decomposition is the most general of such decomposition methods. Although the relationship to other structural decomposition methods has been thoroughly investigated, only little research has been done on efficient algorithms for com...

متن کامل

Understanding Tractable Decompositions for Constraint Satisfaction

Constraint satisfaction problems (CSPs) are NP-complete in general, therefore it is important to identify tractable subclasses. A possible way to find such subclasses is to associate a hypergraph to the problem and impose restrictions on its structure. In this thesis we follow this direction. Among such structural properties, particularly important is acyclicity: it is well known that CSPs whos...

متن کامل

Genetic algorithms for generalized hypertree decompositions

Many practical problems in mathematics and computer science may be formulated as constraint satisfaction problems (CSPs). Although CSPs are NP-hard in general, it has been proven that instances of CSPs may be solved efficiently, if they have generalized hypertree decompositions of small width. Unfortunately, finding a generalized hypertree decomposition of minimum width is an NP-hard problem. B...

متن کامل

Backtracking Procedures for Hypertree, HyperSpread and Connected Hypertree Decomposition of CSPs

Hypertree decomposition has been shown to be the most general CSP decomposition method. However, so far the exact methods are not able to find optimal hypertree decompositions of realistic instances. We present a backtracking procedure which, along with isomorphic component detection, results in optimal hypertree decompositions. We also make the procedure generic; variations of which results in...

متن کامل

A Backtracking-Based Algorithm for Computing Hypertree-Decompositions

Hypertree decompositions of hypergraphs are a generalization of tree decompositions of graphs. The corresponding hypertreewidth is a measure for the cyclicity and therefore tractability of the encoded computation problem. Many NP-hard decision and computation problems are known to be tractable on instances whose structure corresponds to hypergraphs of bounded hypertree-width. Intuitively, the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005